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Abstract: Land use and land cover maps (LULC) are abstractions of the physical space of a chosen region. Comparison of
LULC maps is essential to understand landscape dynamics, alteration patterns, and environmental implications. This article
has the objective of propose an algorithm for harmonizing LULC maps based on the spatial distribution of their classes and
applies it in a case study to harmonize the maps of Brazil’s National Inventory of Anthropogenic Emissions by Sources
and Removals of Greenhouse Gases (Fourth Version) and MapBiomas (Collection 7) based on their spatial distribution of
LULC classes. The purpose of this paper is to compute the agreement between two initiatives. Furthermore, the results
highlight the classes and areas of potential inconsistency or ambiguity, allowing to identify and correct discrepancies,
proposing a harmonized legend between then. At the national level, we reached maximum agreement 81% between the two
maps. Of the 44 equivalences, the algorithm accurately recognized 36 of the connections between the classes. At the biome
level, the algorithm achieved its highest concordance within the Amazonia biome, surpassing Brazil’s level by 11%, mainly
due to the size and homogeneity of the forest classes. In biomes with a predominance of nonforest vegetation, an increased
confusion was observed among the classes ‘Grassland’, ‘Pasture’, and ‘Forest’ was observed between the maps, especially
in Pampa and Caatinga.
Keywords: Harmonization algorithm. National Inventory. MapBiomas. Land use and land cover maps.

Resumo: Mapas de uso e cobertura da terra (UCT) são abstrações do espaço físico de uma região escolhida. Comparar
esses mapas é essencial para entender a dinâmica da paisagem, padrões de alteração e implicações ambientais. Este artigo
tem o objetivo de propor um algoritmo para harmonizar mapas de UCT baseado na distribuição espacial de suas classes e
aplicá-lo em um estudo de caso para harmonizar os mapas do Inventário Nacional de Emissões Antrópicas por Fontes e
Remoções de Gases de Efeito Estufa do Brasil (Quarta Versão) e MapBiomas (Coleção 7) com base na distribuição espacial
das classes de uso e cobertura da terra. Esta investigação visa calcular a concordância entre as duas iniciativas. Além disso,
os resultados destacam as classes e áreas de potencial inconsistência ou ambiguidade, permitindo identificar e corrigir
discrepâncias, propondo uma legenda harmonizada entre elas. Em nível nacional, alcançamos uma concordância máxima
de 81% entre os dois mapas. Das 44 equivalências, o algoritmo reconheceu com precisão 36 dos mapeamentos entre as
classes. No nível dos biomas, o algoritmo alcançou sua maior concordância dentro do bioma da Amazônia, superando o
nível do Brasil em 11%, principalmente devido ao tamanho e homogeneidade das classes de floresta. Em biomas com
predominância de vegetação não florestal, foi observada uma confusão aumentada entre as classes ’Campo’, ’Pastagem’ e
’Floresta’ entre os mapas, especialmente no Pampa e Caatinga.
Palavras Chave: Algoritmo de harmonização. Inventário Nacional. MapBiomas. Mapas de uso e cobertura da terra.
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1 INTRODUCTION

The Earth, comprised of a complex network of ecosystems, has been a subject of study and engagement
since the beginning of human civilization. The relationship between humans and their environment has
significantly shaped cultural, social, and economic practices. However, in the last decades, there has been an
observed reversal in this relationship. With the expansion of civilization and the advancement of technology,
humanity has transitioned from being mere inhabitants to a dominant force that actively changes and modifies
the environment to meet its needs (VERBURG et al., 2013; PIELKE SR. et al., 2011; ELLIS et al., 2013). In
the context of climate change, the Agriculture, Forestry, and Other Land Use (AFOLU) sector emerges as a
critical component. According to the latest report from the Intergovernmental Panel on Climate Change (IPCC),
this sector was responsible for approximately 22% of human-made greenhouse gas (GHG) emissions in 2019.
Therefore, precise monitoring through LULC maps is necessary to compile inventories of GHG emissions and
removals (SHUKLA et al., 2019).

LULC maps represent the physical space of a chosen region through abstractions that describe the
covered areas. They allow a systematic categorization of geographical regions based on specific human uses and
natural characteristics. These categorizations represent the spatial distribution of human activities, serving as
indicators of human-made pressures on natural ecosystems (JANSEN; GROOM; CARRAI, 2008). In addition,
the analytical and symbolic capabilities of LULC maps are indispensable tools in the scientific field. They
not only document the current state of the environment but also, when employed for comparisons, provide a
perspective for examining human-induced changes over time and their ecological and climatic consequences. As
a result, they play a critical role in forming evidence-based decision-making regarding the management and
conservation of natural resources (VERBURG et al., 2013).

Comparing LULC maps is a valuable resource for environmental and geographical studies. Sequentially
overlaying these maps reveals environmental changes and transformation trends, providing information about
deforestation rates, urban expansion, changes in water bodies, and other critical aspects. This comparative
analysis is essential for evaluating the impacts of land-use policies and projecting future scenarios (ELLIS et al.,
2013).

In Brazil, several initiatives use open data to produce LULC maps, such as MapBiomas (MAPBIOMAS
BRASIL, 2021), TerraClass (INPE, 2019), PRODES (INPE, 2021), IBGE (IBGE, 2019), and the National
Communications to the United Nations Framework Convention on Climate Change (UNFCCC) (BRASIL,
2021). Although each of these initiatives has different objectives, interests and mapping standards, there are
differences in the maps produced for the same area, some of which might be related to the nature of the input
data or the methodology developed. This limits the compatibility and comparability of these data. Different
maps might have been produced at different intervals, and aggregating this information can allow for more
granular time-series analyses.

Harmonization, in the context of LULC, is the process in which the similarities between the definitions
of the existing land cover class are emphasized and inconsistencies are reduced (HEROLD et al., 2006). The goal
in this case is to have different datasets “harmonized” so that a direct comparison can be made between them.
Harmonization does not necessarily eliminate all differences but should eliminate the main inconsistencies.

When the legends are harmonized and equivalences between the class maps are established, it becomes
possible to accurately analyze the similarities and differences between these maps. This harmonization allows for
the identification of areas where different types of classes are present, as well as zones of concordance, where
both maps display the same vegetation type according to the harmonized legend. In addition, it enables the
determination of the total concordance between maps, where there is complete alignment in classification across
all areas.

Harmonization of these LULC maps is challenging due to the different methods, classification systems,
and legends adopted by each project. These differences may stem from the choice of satellite imagery, classification
methods, field support data, among others. In addition to technical discrepancies, there are practical challenges,
such as differences in resolution, projection, and coordinate systems. In addition, harmonizing legends presents
excellent challenges due to their nature. Differences in class naming, changes in class definitions, and the
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addition or deletion of classes in maps covering the same region at different times or in different initiatives create
difficulties in separating actual changes over time from differences in category definitions. Thus, establishing
equivalencies between classes from different maps is vital for effective comparisons.

Typically, comparing LULC maps involves constructing a key based on the semantics of each category.
Frequently, categories are grouped into broader classifications to minimize discrepancies or are excluded
because they lack explanations of similarity. Some classification systems can also standardize the classification
scheme and ensure that the maps are rendered in a way that facilitates comparison (CAPANEMA et al., 2019;
DI GREGORIO, 2016; REIS et al., 2018; NEVES et al., 2020).

While traditional methods primarily start from the semantics of LULC classes, examining the spatial
distribution of categories can yield additional insights. The main objective of this study is to propose an
automated legend harmonization algorithm to achieve the highest possible concordance between two maps. The
main assumption is that harmonization, which leads to the highest concordance, is a robust initial reference
for map comparison, as it can a priori indicate potential inconsistencies between classes. Consequently, the
proposed algorithm can be an initial automated step in the harmonization process between two maps. Instead of
relying solely on the semantics of the classes to initiate the class mapping process, using the proposed algorithm,
it is possible to create a legend based on the results already provided by the algorithm.

Among the existing studies in the literature on the harmonization of LULC maps, there is a predominance
of methodologies that focus on the semantics of classes for the harmonization process (CAPANEMA et al.,
2019; REIS; et al., 2017; DI GREGORIO, 2016). This work stands out for its approach that uses the spatial
distribution of classes as the basis for the automatic harmonization of legends. Unlike methodologies that
rely exclusively on the semantics of legends, which require a lengthy manual analysis of each map’s classes
and depend on project-provided descriptions that may not be clear enough, the proposed approach seeks the
maximum concordance between maps, providing a reference for comparison. It serves as an initial automated
step in the class mapping process.

As a case study, we perform an analysis at the biome level and on a national scale between the MapBiomas
and the National Inventory. Ultimately, after generating the mappings through the algorithm, we performed a
semantic analysis of the classes and created a concordance map, followed by the development of a harmonized
legend that aligns the classifications of the two datasets.

2 HARMONIZATION ALGORITHM

This section presents the proposed algorithm for harmonizing legends from two LULC maps. The
algorithm provides information that helps the user to map between classes from two land use maps. It computes
a maximum concordance between the two maps, meaning that any class mapping different from the one chosen
by the algorithm will result in concordance equal to or lower than the algorithm’s result.

The algorithm takes as input two land use maps, 𝑀1 and 𝑀2, and returns to the user a proposed legend
based on the identified concordances. 𝑀1 has classes 𝑥1, 𝑥2, · · · , 𝑥𝑚, and 𝑀2 has classes 𝑦1, 𝑦2, · · · , 𝑦𝑛.The
algorithm requires that the spatial representations of both maps are compatible, that is, they must be in the
same projection, in matrix format, with the same number of rows and columns and spatial resolution. If not, a
preprocessing step is required for these maps, which is not performed by the algorithm.

The algorithm consists of three steps. The first step involves creating a cross-tabulation matrix, 𝐴. In
this matrix, each entry 𝑎𝑖 𝑗 represents the number of pixels where class 𝑥𝑖 from map 𝑀1 is concordant with class
𝑦 𝑗 from map 𝑀2. It is of the form:

𝐴 =

©«
𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
. . .

...

𝑎𝑚1 𝑎𝑚2 · · · 𝑎𝑚𝑛

ª®®®®®¬
, 𝐴 ∈ N𝑚×𝑛 (1)

3



Rev. Bras. Cartogr, vol. 76, 2024 DOI: http://dx.doi.org/10.14393/rbcv76n0a-72784

In the second step, the concordances are determined by row and by column of matrix 𝐴, forming two
sets, 𝐶𝑅 and 𝐶𝐶 . These sets are defined using the following functions:

For each row 𝑥𝑖 in matrix 𝐴, we define the concordance set 𝐶𝑅 as:

𝐶𝑅 (𝑥𝑖) =
{
𝑦𝑘 | 𝑛𝑟 (𝑎𝑖𝑘) = max

𝑝=1,...,𝑚
{𝑛𝑟 (𝑎𝑖 𝑝)}

}
(2)

where
𝑛𝑟 (𝑎𝑖𝑘) =

𝑎𝑖𝑘∑𝑚
𝑝=1 𝑎𝑖 𝑝

(3)

and 𝑛𝑟 (𝑎𝑖𝑘) represents the proportion of pixels in row 𝑖 that are concordant with column 𝑘 .
Similarly, for each column 𝑦 𝑗 in matrix 𝐴, we define the concordance set 𝐶𝐶 as:

𝐶𝐶 (𝑦 𝑗) =
{
𝑥𝑘 | 𝑛𝑐 (𝑎𝑘 𝑗) = max

𝑝=1,...,𝑛
{𝑛𝑐 (𝑎𝑝 𝑗)}

}
(4)

where
𝑛𝑐 (𝑎𝑘 𝑗) =

𝑎𝑘 𝑗∑𝑛
𝑝=1 𝑎𝑝 𝑗

(5)

and 𝑛𝑐 (𝑎𝑘 𝑗) represents the proportion of pixels in column 𝑗 that are concordant with row 𝑘 .
In these expressions:

• 𝑛 is the number of rows in matrix 𝐴;

• 𝑚 is the number of columns in matrix 𝐴;

• 𝑎𝑖 𝑗 is the number of concordant pixels between class 𝑥𝑖 and class 𝑦 𝑗 ;

•
∑𝑚

𝑝=1 𝑎𝑖 𝑝 is the total number of pixels in row 𝑖;

•
∑𝑛

𝑝=1 𝑎𝑝 𝑗 is the total number of pixels in column 𝑗 .

The set𝐶𝑅 contains 𝑚 pairs, (𝑥𝑖 , 𝑐𝑟 (𝑥𝑖)), 𝑖 ∈ {1, · · · , 𝑚} formed by the classes of 𝑀1 and their respective
classes of 𝑀2 that presented the highest concordances according to matrix 𝐴. Analogously, set 𝐶𝐶 is formed by
𝑛 pairs, (𝑐𝑐 (𝑦𝑖), 𝑦𝑖), 𝑖 ∈ {1, · · · , 𝑛}, representing the concordance of the classes of 𝑀2 in relation to the classes
of 𝑀1, according to 𝐴. After the formation of these two sets, the last step of the algorithm consists of producing
the harmonized legend, given by:

𝐶𝑅 ∪ 𝐶𝐶 (6)

containing all matches obtained by the functions 𝑐𝑟 and 𝑐𝑐. This set can have a maximum size equal to the sum
of the class quantities from both maps and a minimum size equal to the number of classes on the map with the
most classes. The union of the sets 𝐶𝑅 and 𝐶𝐶 encompasses three possible mappings between the classes of
maps. The first is the simplest, occurring when there is a mapping by row from class 𝑥𝑖 to class 𝑦 𝑗 , and there is
also a mapping by columns between 𝑦 𝑗 and 𝑥𝑖 in the second mapping. Thus, the pair (𝑥𝑖 , 𝑦 𝑗) is considered in the
harmonization.

The first case is when the mapping from class 𝑐𝑟𝑠𝑖 to class 𝑐𝑟𝑠 𝑗 occurs in the row and column
harmonization. The second case occurs when the mapping of a class exists only in one of the harmonization. For
example, when there is a mapping by row from class 𝑥𝑖 to class 𝑦 𝑗 , but class 𝑥𝑖 is not mapped in the column
harmonization. In this case, the pair (𝑥𝑖 , 𝑦 𝑗) is considered in the harmonization. In the last case, there is a
mapping by row from class 𝑥𝑖 to class 𝑦 𝑗 , but in the column mapping, class 𝑦 𝑗 is mapped to class 𝑥𝑘 , 𝑘 ≠ 𝑖,
indicating an inconsistency. In any case, the pairs (𝑥𝑖 , 𝑦 𝑗) and (𝑥𝑘 , 𝑦 𝑗) will be considered in the harmonized
legend.

Consider the following example to better contextualize the algorithm’s operation. In Figure 1, we present
two representations of maps, Map 1 and Map 2.
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Figure 1 – Example of hypothetical maps for illustrative purposes.

Source: Author’s production.

Each map consists of a grid of squares, where each square represents a pixel. Map 1 has three classes:
x, y, and z, while Map 2 has four classes: a, b, c, and d. It’s important to note that both maps have the same
number of rows and columns and spatially represent the same area. Therefore, the algorithm will overlay them to
perform the comparison.

When providing these maps as input to the algorithm, a cross-tabulation table is generated between the
maps. After generating the matrix, the maximum values are identified by row and by column to determine the
concordance between the classes. In Figure 2, we present the cross-tabulation matrix obtained between the two
maps, highlighting in grey the maximum values per row and per column. For example, in the first row, referring
to class x of Map 1, the maximum value identified is 100, which corresponds to class a of Map 2. In the same
row, the value 20 is also highlighted in grey, which is the maximum value in the column corresponding to class d
of Map 2.

Figure 2 – Example of cross-tabulation between the maps.

Source: Author’s production.

In Figure 3, the concordances obtained by row and by column are presented separately, and subsequently,
the final concordance obtained from the union of both is shown. Here, it is possible to observe three distinct
cases: classes a and x were mapped in both concordances, while class z was mapped as class a in the row
concordance and as class c in the column concordance. Additionally, class d was only present in the column
concordance, being mapped as class x.
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Figure 3 – Concordances obtained by row and by column and the final concordance.

Source: Author’s production.

Figure 4 presents the table with the agreements between the map classes.

Figure 4 – Concordances between map classes.

Source: Author’s production.

The algorithm aims to be the first step in the harmonization process of LULC map legends, providing a
proposed legend based on the spatial distribution of the classes in the maps, which delivers the highest possible
concordance between them. It can capture subtle nuances in class definitions between different maps, reflecting
both unidirectional and bidirectional correspondences in class concordances by examining the row and column
correspondences. In addition, it highlights potential inconsistencies or ambiguities, allowing users to identify
and fix them manually in the next step.

It is important to emphasize that for the algorithm to perform effectively, both classifications should
accurately represent the reality. Otherwise, when most of the obtained maps are incorrect, the entire mapping
between classes will need to be done manually based on the semantics of the classes.

In practical terms, the automation provided by the algorithm facilitates the integration of data from
different sources, optimizing the efficiency of the process, and minimizing errors that can arise from manual
approaches. It is an initial step for mapping classes between maps, and it’s up to the user to check if the obtained
mappings are coherent or if the legend needs to be adapted. It is necessary to separate what are inconsistencies
from what are correspondences between classes. It is worth highlighting that since the legend produced by the
algorithm provides the combination with the highest concordance between the maps, any changes will result in a
lower concordance.
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In the goal to make the proposed algorithm accessible and facilitate its use, a Python package named
GeoMapHarmonizer was developed. The package automates the legend harmonization process for geospatial
data, particularly focusing on LULC maps in GeoTIFF format. To handle large datasets, the package applies
techniques like dividing maps into smaller blocks and efficiently consolidating results, making it scalable for
Big Data applications. Compatibility checks ensure that both maps have the same projection, resolution, and
dimensions before applying the harmonization algorithm. The package is built using Python with libraries such
as pandas, numpy, sklearn, and gdal. The complete package can be found on the GitHub repository.

3 CASE STUDY

As a case study, we use the legend harmonization algorithm presented to compare two maps: MapBiomas
and the Brazilian National Inventory. Subsequent to the application of the algorithm, an evaluation of the
harmonizations achieved for each biome will be conducted, estimating the maximum concordance for each
biome. The key points of the harmonizations obtained will be emphasized, and a comparison of the results will
be carried out.

We compare both maps at national and biome level. As the most recent map for the National Inventory
is forb year 2016, this will be the reference year for our case study. The National Inventory map is divided by
biomes according to the 2004 biome boundaries defined by IBGE, and these are the boundaries considered for
biomes in this study. Next, we present an overview of both initiatives, along with their unique features.

3.1 MapBiomas

The Annual Land Use and Land Cover Mapping Project in Brazil (MapBiomas) originated from
an initiative by the Greenhouse Gas Emission Estimates System of the Climate Observatory (SEEG/OC).
A collaborative network of co-creators, including NGOs, universities, and technology companies,developed
this project. Its objective is to produce annual LULC maps for Brazil using a more cost-effective and rapid
methodology (MAPBIOMAS BRASIL, 2021).

The MapBiomas methodology involves a pixel-by-pixel classification of Landsat satellite images with a
spatial resolution of 30m. It leverages the Google Earth Engine platform, applies machine learning algorithms,
and incorporates insights from a network of local specialists. Data production is categorized by biomes to improve
identification of the landscape patterns of the country. The project also addresses transversal themes, including
Agriculture, Pasture, Forests, Coastal Zone, Mining, Urban Infrastructure, and other classes encompassing
coastal regions (MAPBIOMAS BRASIL, 2022; SOUZA et al., 2020).

The data generated by this project is organized into Collections. In August 2023, MapBiomas released
Collection 7.1, with improvements in class classification, presenting LULC maps from 1985 to 2021. MapBiomas
offers a detailed legend description, including its equivalence with IBGE, FAO, and IPCC classes. Figure 5
presents an overview of the data from collection 7.

7
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Figure 5 –
LULC map of MapBiomas Collection 7 (Year 2016). The square in red show a small area in more

details.

Source: Author’s production.

3.2 Brazilian National Inventory

The Brazilian National Inventory of Anthropogenic Emissions by Sources and Removals of Greenhouse
Gases (hereafter referred to as National Inventory), whose mission is part of Brazil’s Fourth National Com-
munication (4th NC) to the United Nations Framework Convention on Climate Change (UNFCCC). The 4th
NC provides anthropogenic emissions of GHGs no longer managed via the Montreal Protocol. The Ministry
of Science, Technology and Innovations (MCTI) coordinates and improves the National Inventory. Emission
estimates are derived from the LULC map developed by the National Inventory itself. This mapping is produced
from images from the Landsat-5/8 satellite and the MSI/Sentinel 2A and 2B sensors at a scale of 1:250,000 and
a minimum area of 6 hectares. The adopted methodology includes an object-oriented image segmentation step, a
semi-automatic classification and, finally, a visual interpretation (MCTI, 2021; BRASIL, 2021; MCTI, 2020).
Figure 6 presents an overview of the produced LULC map of the National Inventory from the 4th NC.
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Figure 6 –
LULC map of Brazil’s National Inventory (Year 2016). The square in red show a small area in more

details.

Source: Author’s production.

LULC maps are vector representations that overlay years 1994, 2002, 2005 (only for the Amazon biome),
2010, and 2016, and are divided by means of biomes following the limits established by IBGE in 2004 (MCTI,
2020). LULC maps are available from National Emissions Registry System (SIRENE).

4 RESULTS

Table 1 displays the maximum concordances achieved in each biome1. This value is obtained when
the harmonized legend produced by the algorithm is applied to both maps, considering the lowest hierarchy
level of the classes. Figure 7 shows the harmonization between the National Inventory and MapBiomas, as
generated by the algorithm for the entire country. The classes that were identified as equivalent in both row and
column harmonization are indicated in blue, while the classes that had different equivalences in row and column
are indicated in orange. Lastly, the cases where the class was only identified in one of the harmonizations are
indicated in yellow.
1 The charts and others harmonizations for the biomes can be viewed in detail on the project’s GitHub page.
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Table 1 – Maximum concordance obtained in each of the harmonizations and the area of each
applied region.

Area (km2) Maximum
concordance (%)

Amazon 4,253,027 92.39%
Caatinga 843,615 75.27%
Cerrado 1,983,655 74.33%
Atlantic
Forest 1,116,119 77.86%

Pampa 203,965 79.32%
Pantanal 150,972 55.51%
Brazil 8,604,500 81.03%

Source: Author’s production.

Figure 7 –
Harmonized legend produced by the algorithm for all of Brazil.
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The Amazon biome has the largest area among all listed biomes, totaling 4,253,027 km2, with the
highest concordance of 92.39%. Much of this is due to the vast expanse of classes defined as forest, which
favors the overlap between them and, consequently, their correct identification. All forest classes of the National
Inventory (‘Managed Forest/I’2, ‘Unmanaged Forest/I’, ‘Secondary Forest/I’, and ‘Selective Logging/I’) were
mapped to ‘Forest Formation/M’. More granular classes, such as ‘Beach, Dune, and Sand Spot/M’, ‘Other
non-Vegetated Areas/M’, ‘Rice (beta)/M’, and ‘Unmanaged Dunes/I’ were incorrectly matched as ‘Forest’. In
contrast, ‘Perennial Agriculture/I’ was identified as ‘Pasture/M’ in the harmonization. The small area of these
classes in the Amazon biome leads to a low impact on the overall harmonization. However, it raises points of
attention, especially considering classes related to pasture and agriculture being identified as forest since, on a
small scale, they can have implications for conservation policies or zoning.

In the Cerrado biome, the harmonization produced a concordance of 74.33%. It is important to highlight
that the ‘Managed Forest/I’ class was associated with the ‘Aquaculture/M’. Additionally, the majority of other
classes in the National Inventory were predominantly grouped under the ‘Savanna Formation/M’, with 33%
of the entire concordance area. This includes the ‘Secondary Field/I’ class that was incorrectly associated. In
addition, in this biome, another 32% of the concordance area was labeled as ‘Pasture/I’, with 11% of this total
mapping of the ‘Mosaic of Uses/M’ class as ‘Pasture/I’.

For the Caatinga biome, the produced legend achieved a concordance of 75.27%. In this biome, some
mappings stood out between the maps: the ‘Mosaic of Uses/M’ class was incorrectly mapped as ‘Unmanaged
Forest/I’, just as the classes of ‘Unmanaged Field/I’ and ‘Secondary Field/I’ were also incorrectly mapped as
‘Savanna Formation/M’. The classes for water and agriculture were mostly correctly mapped. From this, it can
be inferred that in this biome, the forests and grassland classes showed a lot of confusion between the maps,
which might indicate that the semantic definitions of these classes may be very similar between the initiatives,
especially when considering that this biome is characterized by shrub and herbaceous vegetation.

In the Atlantic Forest biome, where a concordance of 77.86% was observed, there was a trend to group
various classes from the National Inventory into the ‘Forest Formation’ category of MapBiomas. In this biome,
the harmonized legend showcases 41 unique class combinations, a testament to the biome’s diversity brought
about by the conversion of primary lands. This has led to the formation of a landscape featuring small forest
blocks interspersed with converted regions, a stark departure from the Amazon’s vast forest blocks that create a
more uniform composition. Most of the classes do not have the same harmonization by row and column. It should
be noted that classes such as ‘Managed Field/I’ and ‘Secondary Field/I’ were labeled as ‘Forest Formation/M’,
along with the ‘Managed Dunes/I’ class. The ‘Herbaceus Restinga’ from MapBiomas was identified as ‘Pasture’
from the National Inventory.

The Pampa biome presents a 79.32% concordance between the two maps. Most of the classes in the
National Inventory were labeled as ‘grasslands, which could suggest that MapBiomas overestimates the grasslands
classes in this region, given that 15% of the entire biome was labeled by the pair ‘Pasture/I’ and ‘Grassland/M’.
This also happened with Unmanaged Forest/I, where 8% of the total area was labeled as ‘Grassland/M’.

The Pantanal showed the lowest concordance among all biomes, registering only 55.51%. This
discrepancy may be attributed to the unique spatial distribution of classes in this biome. The predominance of
certain classes in different areas could have influenced a lower concordance between the initiatives. In particular,
the classes related to ‘Forest’ were correctly mapped, except for the ‘Secondary Forest/I’ class, which was
identified as ‘Grassland/M’. Another highlight was the classes ‘Other Unmanaged Woody Formations/I’ and
‘Wetland/M’ identified as equivalents, representing 9% of the entire equivalence area of the biome.

When analyzing the concordances obtained at the national level and displayed in Figure 7, which
presents a maximum concordance of 81%, there are some interesting trends and characteristics. The Amazon
biome was the only one that showed a concordance higher than Brazil’s by 11%, mainly due to the size and
homogeneity of the forest classes. It is evident that, at national level, extensive forested and agricultural areas
exhibit relatively strong correspondence between the two maps. This alignment is a positive indicator for
macroecological assessments and large-scale policy considerations. On the other hand, this general accuracy
2 We use /I for classes of Inventory and /M for MapBiomas.
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should not overshadow the particularities of the biomes and the idiosyncrasies of data in more specific areas.

Figure 8 –
Concordance map obtained from the legend provided by the algorithm. The square in black show a

small area in more details.

Source: Author’s production.

In the harmonizations of the Amazon, Cerrado, Atlantic Forest, Pantanal, and throughout Brazil, the
‘Mosaic of Uses/M’ class was identified as ‘Pasture/I’, indicating that most of this class overlaps with the pasture
class from the National Inventory and could be attributed to this class in the final harmonization for the sake of
accuracy. Meanwhile, for Brazil, Caatinga, Atlantic Forest, and Pampa, the classes ‘Unmanaged Rock Outcrop/I’
and ‘Forest Formation/M’ were associated, raising an alert given their semantic differences. Similarly, this also
occurs between ‘Unmanaged Forest/I’ and ‘Rock Outcrop/M’. The classes ‘Managed Forest/I’ and ‘Cotton
(beta)/M’ were incorrectly associated in three of harmonizations obtained. This might occur due to the small
area encompassing the ‘Cotton (beta)/M’ class, which is more subject to erroneous overlaps. This can also occur
with more emphasis on transition areas between biomes, which is more difficult to classify accurately due to the
more significant variability in native vegetation.

Certain relationships become more evident when examining all the obtained harmonizations. The
‘Annual Agriculture/I’ and ‘Soybean/M’ classes were correctly identified in all seven harmonizations, indicating
a good match between the two maps regarding annual agricultural areas dedicated to soy. Similarly, the class
‘Pasture’ in both maps was correctly associated in all cases. For ‘Reforestation/I’ and ‘Silviculture/M’, both maps
have a good match for reforestation or silviculture areas, correctly identifying them in all regions. The ‘Reservoir’
and ‘Water’ classes of the National Inventory were also attributed in all harmonizations to the ‘River, Lake and
Ocean/M’ class. This also occurred between ‘Settlement/I’ and ‘Urbanized Areas/M’, as well as ‘Unmanaged
Forest/I’ and ‘Forest Formation/M’.
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Figure 9 –
Harmonized legend built from the algorithm.
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Figure 8 shows the map highlighting areas of concordance between the maps based on the legend
provided by the harmonization algorithm. The main regions with lower concordance between the maps are
clearly visible. In the Pampa, Pantanal, and Caatinga biomes — those with the lowest percentage of concordance
— the largest areas of divergence are concentrated, while in the other biomes, these areas are smaller and more
scattered. When comparing the maps, it becomes apparent that MapBiomas tends to overestimate forested
areas, diverging from the National Inventory, which shows a greater extent of pastureland and other non-forest
formations, especially in this regions.

In Figure 9, we have the harmonized legend and a semantic analysis of the classes between the MapBiomas
maps and the National Inventory based on the proposed harmonization algorithm. The harmonization generated
by the algorithm and the harmonization that combines the semantic analysis and the algorithm are largely aligned
for most classes. However, there are some areas of divergence, particularly in the nuances of forest formations
and pastures. This is mainly due to the characteristics of the classes assigned to each biome, since both initiatives
define the classes of native vegetation, especially the forest and grassland classes, according to the characteristics
of each biome. This causes discrepancies between classes and confuses pasture and grassland classes, given
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their structure and similar characteristics in some biomes. The same applies to some forest classes, which, in
biomes is characterized by non-forest vegetation such as grassland, pasture and rock outcrop. The different
classifications used by the initiatives lead to some confusion between these forests and grasslands, as well as
between grasslands and pasture classes.

This preliminary analysis using the algorithm provides a broader perspective on classes in a legend
that lack direct equivalents, such as the "Agriculture and Pasture Mosaic" class in MapBiomas. Rather than
disregarding such areas in a study, it is possible to analyze which class they are predominantly mapped to and
consider remapping accordingly. For instance, in (CAPANEMA et al., 2019), the ‘Mosaic of Uses’ class was
excluded from the study, and a similar approach was taken in (NEVES et al., 2020), where the ‘Mosaic of
Uses’, ‘Secondary Vegetation’, ‘Mining’, and ‘Annual Deforestation’ classes were disregarded due to the lack
of equivalent categories. In these cases, applying the harmonization algorithm beforehand could help identify
spatial correspondences and, when appropriate, incorporate these classes into the final harmonization.

5 CONCLUSION

The legend harmonization algorithm provides a first automated step for the class mapping process, a
frequent challenge in LULC studies. One of the main strengths of this method is its comprehensive approach,
ensuring a clear equivalence for every class in every map. This approach has to be complemented by a double
check, where classes are compared in rows and columns, ensuring that all map classes will have an equivalent.

The integrity and precision of LULC maps are essential for understanding landscape dynamics, land
alteration patterns, and their environmental implications. By comparing and harmonizing LULC maps from
different initiatives, this study emphasized the importance of robust and comprehensive approaches, such as the
legend harmonization algorithm presented.

The harmonization between the maps of both initiatives showed a good concordance rate with some
reservations, especially when considering the Pantanal biome. It was possible to observe excellent mappings
for significant classes such as forests and reforestation, urban areas, pastures, and water. When analyzing the
harmonization at Brazil level, it is possible to notice that the main class confusions that occurred in each biome
diminish when aggregating all areas, in addition to reinforcing the classes that were similarly mapped in all
biomes.

In biomes with a predominance of non-forest vegetation, it was noticeable that there was an increased
confusion among the grassland, pasture, and forest classes between the maps, especially in Pampa and Caatinga.
Therefore, greater attention is needed in these cases when adapting to a coherent harmonization between the
maps. The proposed legend, obtained from the algorithm’s results, addresses the discrepancies between the
classes identified during the initial concordance and may aid future studies.

In practical terms, the automation provided by the algorithm facilitates the integration of data from
different sources, optimizing the efficiency of the process and minimizing errors that can arise from manual
approaches. This optimization saves time and improves data interpretability, establishing a common standard
that benefits researchers, decision-makers, and other stakeholders.

It is possible to assess changes over time and the influence of land use policies and practices by
highlighting the similarities and differences. Moreover, this comparison becomes even more relevant in the
absence of inventories in subsequent years. It allows for extrapolating trends and analysing carbon emissions by
biome, ultimately providing insights for land-use planning and decision-making processes.
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